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Laboratory experiments have been performed on resonantly forced interfacial waves
in a circular cylindrical basin containing a two-layer stratified fluid. The results of this
shallow-water study exhibit a number of similarities to previous shallow-water studies
performed in single-layer fluids, such as the generation of a large-amplitude response
over a frequency bandwidth offset from the primary resonance, generation of a swirling
mode at the observed resonant condition, and the significant contribution of higher
harmonics. The two-layer experiments also produce results that are unique to stratified
domains. In particular, the observed negative nonlinearity of the resonant condition
at shallow water depth, mixing of the density interface resulting in detuning the forced
response from the resonant condition, the enhanced role of viscous dissipation, and
an alternative pathway for the nonlinear generation of higher-frequency waves when
the layer depths are disparate. The results of this study are considered with regard to
their implications for enclosed basins at the geophysical scale that are subject to near
resonant forcing.

1. Introduction
The sloshing of fluid within an enclosed domain has motivated a large number

of theoretical and experimental studies with application to the space industry
(axisymmetric tanks) and shipping industry (rectangular tanks). Concise reviews of the
work conducted during the last 40 years can be found in Faltinsen, Rognebakke &
Timokha (2003) and Ibrahim (2005). Studies focus on domains for which either the
horizontal length scales are comparable (three-dimensional studies) or one length
scale dominates (two-dimensional studies).

Two-dimensional resonant sloshing, induced by the back-and-forth agitation of a
rectangular tank filled with fluid, results in the amplification of the primary mode
of the domain, with the response taking the form of a planar standing wave (e.g.
Faltinsen & Timokha 2001, 2002) whose character is dependent upon the excitation
amplitude A and the fluid depth h, relative to the characteristic domain length scale L

(e.g. Faltinsen & Timokha 2001). As the excitation amplitude increases, the primary
mode becomes large in an increased frequency bandwidth around the primary natural
frequency (e.g. Faltinsen & Timokha 2001; Royon-Lebeaud, Hopfinger & Cartellier
2007). The effect of varying the aspect ratio h/L is two-fold. First, as h/L is varied,
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the frequency bandwidth containing the primary mode broadens and shifts away
from the natural frequency with a pronounced hysteresis (e.g. Ockendon & Ockendon
1973; Miles 1984; Faltinsen et al. 2000). Such behaviour is a nonlinear effect rather
than due to dissipation (e.g. Miles 1984). For deep water (h/L > 1), this shift in the
resonant condition is to forcing frequencies less than the natural frequency of the do-
main (σf /σ1 < 1, σf is the forcing frequency and σ1 is the natural frequency of the
basin) and is referred to in the literature as negative nonlinearity (e.g. Miles 1984;
Faltinsen et al. 2003). For shallow water (h/L � 1), this shift is to forcing frequencies
greater than the natural frequency of the domain (σf /σ1 > 1), referred to as positive
nonlinearity. Secondly, for shallow water, the natural frequencies of the domain have
a commensurate spectrum such that nonlinearities, introduced when the primary
mode becomes large, result in secondary (internal) resonance and excitation of higher
harmonics (Faltinsen & Timokha 2002; Faltinsen, Rognebakke & Timokha 2005b).

Three-dimensional resonant sloshing in axisymmetric (circular) and square-base
cylindrical domains results in the amplification of the primary modes, with the
response taking the form of either a ‘planar’ standing wave (in this context, the
term planar refers to two-dimensional motion, e.g. Faltinsen et al. 2003, 2005a) or
a rotating wave (three-dimensional motion), commonly known as a ‘swirling’ wave
(Miles 1984; Gavrilyuk, Lukovsky & Timokha 2000). A domain with a square-
based geometry introduces an additional three-dimensional wave known as a ‘square’
wave (Miles 1994). The frequency bandwidths where these motions are stable vary
with h/L (Faltinsen et al. 2003, 2005a). In addition, there is a frequency bandwidth
where no stable motions exist and chaotic motions are observed (e.g. Royon-Lebeaud
et al. 2007); the character of the response in this domain also varies with h/L such
that chaotic motions seem not to be observed for h/L < 0.25 (Gavrilyuk et al. 2000;
Faltinsen et al. 2003, 2005a). The role of viscous dissipation, although observed experi-
mentally to be generally weak in single-layer fluids (e.g. Faltinsen et al. 2003, 2005a),
has been accounted for by estimating the logarithmic decrement coefficients for each
natural mode and incorporating these into the numerical approach proposed by
Faltinsen et al. (2005a).

The first experimental investigation into resonant sloshing of interfacial waves
was undertaken by Thorpe (1968) who studied this process in a rectangular domain
containing a miscible two-layer fluid. Thorpe (1968) considered deep-water h2/L ≈ 1
and shallow-water depths h2/L = 0.08, where h2 was the lower-layer fluid depth and L

the dimension of the tank. Theories developed for single-layer fluid studies as well as
the theory of Thorpe (1968) for resonantly forced interfacial waves, predict a change
in nonlinear behaviour as the depth is varied; however, experiments did not show
this. Mixing of the density interface owing to large-amplitude planar standing waves
that were observed in the two-layer fluid at resonance was also noted. Experimental
and theoretical work by La Rocca et al. (2002, 2005), considered an immiscible
two-fluid system in a square-base tank that was subjected to roll/pitch excitation.
Experiments were performed with frequencies away from the primary resonance, and
swirling was not detected. However, La Rocca et al. (2005) quantified the role of
viscous dissipation, by calculating the logarithmic decrement coefficients for the first
three natural modes of the domain, as well as noting the role of secondary resonance
phenomena for both free-surface and interfacial waves.

The objective of the current study is to extend the work presented above and
investigate the resonant sloshing of interfacial waves in a two-layer stratified miscible
fluid contained in a circular domain (i.e. a three-dimensional study) with shallow water
depth, h/L < 0.1, where h is the equivalent depth for a two-layer fluid and L =2R
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the tank diameter. Of particular interest is the large-amplitude response at resonance
and the question of whether a swirling wave can be generated. We aim to determine
whether the results developed for application to the space and maritime industries
may also assist in the understanding of the resonant response within domains at the
geophysical scale, such as lakes, reservoirs and coastal embayments, that are typically
characterized by shallow fluid depth (h/L < 0.1) and vertical density stratification (e.g.
Thorpe 1974; Mysak et al. 1985; Antenucci & Imberger 2003).

Our approach is to perform a laboratory experiment in a circular cylindrical basin
containing fluid with a two-layer stratification driven by steady periodic external
forcing. We investigate the interfacial wave response over a frequency bandwidth that
includes the primary mode of the basin. In particular, we focus on the influence of
varying the fluid depth and the forcing amplitude, as well as investigating the role
of frictional dissipation and the interfacial mixing phenomena that is expected to
be observed at near-resonant forcing frequencies in this miscible two-layer stratified
fluid system. The experimental facility and procedure is introduced in § 2. The results
of the experimental programme are given in § 3. In § 4, the results of this study are
considered in the context of previous studies on nonlinear three-dimensional sloshing,
as well as the implications for enclosed basins at the geophysical scale-subject to
near-resonant forcing.

2. Experimental facility and procedure
The experimental set-up is shown in figure 1. The experiments were conducted in a

98 cm diameter cylindrical Perspex tank of 50 cm depth. In a typical experiment, the
tank was filled with fresh water to the desired upper-layer depth h1, at which point
a saline solution was carefully introduced beneath the lighter fresher water until the
desired lower-layer depth h2 was achieved. The amount of mixing due to the insertion
of the saline solution was minimized by placing a cap over the injection point that
forced the introduced denser fluid out in a radial fashion. A density profile was taken
once the two-layer fluid had returned to its quiescent state, to determine the thickness
of the density interface introduced by the filling process. Profiles were obtained by
traversing a conductivity–temperature (CT) probe over the total depth and then using
the equations of Ruddick & Shirtcliffe (1979) to compute the fluid density. In this
way, the interface thickness could be measured to within 0.1 cm.

A semi-cylindrical Perspex insert (closed at the bottom), attached via a pulley
system to a small d.c. motor mounted on the rotating turntable frame, was initially
positioned at the free surface over one-half of the circular domain (figure 1a). A
basin-scale forcing was modelled by oscillating the insert, using an eccentric crank
and arm attached to the d.c. motor, so that over one forcing period the free surface
over half of the tank was depressed by the stroke 2A, where A is the forcing amplitude,
before being restored to its mean position. Periodic forcing was achieved by repeatedly
driving the insert at a constant forcing frequency σf , typically less than 0.07 Hz. The
interface displacement created by this forcing was sampled at 2 Hz at five positions
within the basin by ultrasonic interfacial wave probes (figure 1b), while the mid-depth
upper-layer azimuthal and radial velocities near the tank centre were sampled at 5 Hz
using a two-dimensional micro Acoustic Doppler Velocimeter (ADV) (figure 1b). Error
estimates are of the order of instrument sensitivity (±0.02 cm for the ultrasonic probes
and ±0.04 cm s−1 for the micro ADV).

The frequencies of the two primary modes in a circular domain are degenerate
(σi,j = σj,i = σi) (e.g. Faltinsen et al. 2003; Royon-Lebeaud et al. 2007) so that herein
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Figure 1. (a) The experimental facility. (b) Plan view of the circular basin indicating the
location of the measurement instrumentation. The distances from the tank sidewall to probes
1–4 are 3, 13, 27 and 45 cm, respectively. Probe 5 is positioned 3 cm from the sidewall and
20 cm from the forcing mechanism. The sample volume of the micro ADV is positioned 3 cm
from the tank centre.

they will be referred to simply as the primary mode, with a frequency σi . Note also that
we distinguish between the lowest forced mode, or primary forced mode, with a fre-
quency σf , and the lowest mode of the circular domain or primary natural mode with a
frequency given by the shallow-water dispersion relation σ1 = k1c0, where k1 = 1.841/R

is the horizontal wavenumber, R is the basin radius and c0 is the linear phase speed
(e.g. Lamb 1932). For a two-layer fluid, the phase speed can be approximated as
c0 =

√
g′hE where g′ = g�ρ/ρ2 is the reduced gravity and hE = h1h2/(h1 + h2) is the

equivalent depth. Preliminary rundown experiments following a single forcing event
indicated that the observed frequency of the primary natural mode was always less
than the frequency calculated using the two-layer approximation for c0 (typically with
a discrepancy of about 10 %) due to the finite thickness of the interface (approximately
2 cm thick, see figure 8 for a typical density profile). To correct for this, the buoyancy
frequency as a function of depth N(z) was calculated from the density profile and,
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Run 2A h1 h2 hE g′ σ1 σf /σ1

1 0.5 19.5 19.5 9.5 10.0 0.34 <1
2 0.5 19.5 19.5 9.5 10.6 0.33 >1
3 1.0 19.5 19.5 9.5 10.0 0.33 <1
4 1.0 19.5 19.5 9.5 9.0 0.32 >1
5 1.5 19.5 19.5 9.5 9.1 0.32 <1
6 1.5 19.5 19.5 9.5 8.4 0.30 >1
7 2.0 19.5 19.5 9.5 9.1 0.32 <1
8 2.0 19.5 19.5 9.5 9.0 0.32 >1
9 1.5 13.5 13.5 6.8 11.4 0.30 <1

10 1.5 13.5 13.5 6.8 11.0 0.29 >1
11 1.5 10.0 10.0 5.0 9.2 0.24 <1
12 1.5 10.0 10.0 5.0 13.4 0.29 >1
13 1.5 7.0 20.0 5.2 11.0 0.27 <1
14 1.5 7.0 20.0 5.2 11.0 0.27 >1
15 1.5 19.5 19.5 9.5 10.1 0.33 Planar rundown
16 1.5 19.5 19.5 9.5 10.1 0.33 Swirling rundown

Table 1. The experimental programme: all data in c.g.s. units except for σ1 (as determined
before the start of the experiment) which is in rad s−1. σf /σ1 is the normalized initial forcing
frequency which is not applicable for runs 15 and 16 which are rundown experiments.

following the procedure outlined in Münnich, Wüest & Imboden (1992), the true
phase speed c0 and the frequency of the primary natural mode σ1 were determined.

In a typical experiment, periodic forcing was initiated at a prescribed frequency
far from the frequency of the primary natural mode. This could be achieved in two
ways, either for σf /σ1 > 1, in which case the response of the density interface was
barotropic (in phase with the free-surface displacement) or for σf /σ1 < 1, in which
case the response of the density interface was baroclinic (180◦ out of phase with the
free-surface displacement). In the first case, for a fixed hE and forcing amplitude A,
forcing was typically initiated with a frequency in the range σf /σ1 > 1.15. Forcing was
maintained at this frequency for at least 50 forcing periods, after which time a steady-
state interfacial wave response was observed (justification for the observed attainment
of steady state after 50 forcing periods is presented in § 3.1.2). The forcing frequency
was then decreased by a small discrete amount (by approximately σf /σ1 = 0.025) and
maintained at this new frequency for 50 forcing periods, at which point a steady-state
response was again observed. This procedure of decreasing the forcing frequency by
a small amount and waiting for the re-establishment of the steady-state response
was repeated until σf /σ1 < 0.75, at which point an experiment was terminated. An
analogous procedure was followed for the baroclinic response (typically initiated
with forcing frequency σf /σ1 < 0.75), but in this instance the forcing frequency was
repeatedly increased by small amounts until σf /σ1 > 1.15. In this way, both approaches
covered a similar frequency bandwidth of at least 0.75 <σf /σ1 < 1.15 and, for a given
hE and A, enabled us to determine whether the response exhibited a dependency upon
the direction of approach to the resonant condition.

Density profiles were taken prior to each adjustment of the forcing frequency so
that thickening of the density interface, owing to mixing associated with the large
interface displacement at near resonant frequencies, and hence changes in c0 and σ1,
were accounted for (see figure 8).

The experimental programme is summarized in table 1. The stroke 2A, which was
varied between 0.5 cm and 2 cm, is scaled with the basin diameter 2R so that the
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Figure 2. Time series of the interface displacement η of the forced response collected at 2 Hz
from probe 1 for run 5 (A/R = 0.015, hE/2R = 0.1) when (a) σf /σ1 = 0.76, (b) σf /σ1 = 0.83,
(c) σf /σ1 = 0.93, and (d) σf /σ1 = 1.00. Time t has been scaled with the forcing period Tf .
Interface displacement measurements are accurate to ±0.02 cm. Note the change of vertical
scale in the four plots.

dimensionless forcing amplitude A/R varied between 0.005 and 0.02. The equivalent
depth hE is also scaled with the basin diameter 2R with the dimensionless depth hE/2R

being varied between 0.05 and 0.1, so this is a shallow-water study as hE/2R � 1 (see
Dean & Dalrymple 1992; Faltinsen & Timokha 2002).

3. Results
Interface displacement time series measured with probe 1 for a typical run (run

5) are presented in figure 2 in order to illustrate the salient features of the forced
response that are ubiquitous throughout the experimental regime. The ratio of the
initial forcing frequency to the frequency of the primary natural mode is σf /σ1 = 0.76
for this run, with the interface displacement exhibiting beating owing to the interaction
between the transient and forced response (figure 2a). After approximately 40 forcing
periods, the beating phenomenon is no longer evident, probably because of the
viscous dissipation of the transient response, so the time series consists of only the
forced response with an interface displacement of approximately 1 cm. The forcing
frequency is then increased to σf /σ1 = 0.83, and after approximately 10 forcing periods
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Figure 3. Normalized power spectra of the interface displacements η shown in figure 1. The
power spectra of the interface displacement are scaled by the value noted at the observed
frequency σ . The observed frequency σ is scaled by the forcing frequency σf . The solid vertical
lines identify the frequencies of the harmonics of the primary forced mode. Spectra have been
smoothed in the frequency bandwidth to improve confidence, with the 95 % confidence level
shown by the dotted nearly horizontal lines.

at this new frequency, the interface displacement consists of a wave with a frequency
close to the forcing frequency, and an increased amplitude of 2 cm, as well as a
higher-frequency contribution that persists for the remainder of the time series record
presented in figure 2(b). The forcing frequency is then increased again (σf /σ1 = 0.93),
resulting in the immediate and dramatic amplification of the forced response with
the interface displacement increasing during the first 20 forcing periods, suggesting
that near this forcing frequency resonance, and, hence excitation of the primary
natural mode of the basin, is achieved (figure 2c). After 40 forcing periods, the
interface displacement maintains a constant value of approximately 9 cm. This time
series also suggests some evidence of a higher-frequency contribution (evident in the
wave troughs of the forced response). An increase in forcing frequency (σf /σ1 = 1.00)
results in a dramatic reduction in the forced response amplitude as well as the now
significant contribution of a higher-frequency component that persists for the entire
time series record in figure 2(d).

Normalized power spectra of the interface displacement time series in figure 3
demonstrate the relative contribution of the wave frequencies that constitute the
forced response (figure 3). In all instances, the dominant contribution of the forced
response is the primary forced mode (first harmonic). When σf /σ1 = 0.76, there is
a spectral peak at a slightly higher frequency than the forcing frequency, owing to
the transient response that is generated by the initial condition of the experiment,
as well as evidence of contributions from the second and third harmonics. When
σf /σ1 = 0.83, there is an increased contribution by the second harmonic as well as
some suggestion of minor contributions up to the fifth harmonic. The normalized
power spectra for σf /σ1 = 0.93 and σf /σ1 = 1.00 exhibit a far greater contribution
from frequencies higher than the forcing frequency. The height of the spectral peak
corresponding to the second harmonic, for example, has increased significantly in
comparison to that noted for σf /σ1 = 0.76 and there are contributions up to and
including the sixth harmonic. The excitation of higher interfacial harmonics near the
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Figure 4. (i) Time series of the interface displacement η of the primary forced mode collected
from probes 1 (solid line) and 5 (dotted line) for run 6 (A/R = 0.015, hE/2R = 0.1) when (a)
σf /σ1 = 1.07, (b) σf /σ1 = 0.96, (c) σf /σ1 = 0.92, and (d) σf /σ1 = 0.78. (ii) Interface displacement
at probe 5 versus the interface displacement at probe 1 when (a) σf /σ1 = 1.07, (b) σf /σ1 = 0.96
(last 10 forcing periods), (c) σf /σ1 = 0.92 (the first (grey) and last (black) 10 forcing periods),
and (d) σf /σ1 = 0.78.

resonant frequency has previously been noted experimentally and numerically in the
two-layer immiscible fluid studies conducted by La Rocca et al. (2002, 2005) in a
square domain (in particular, compare figures 2 and 3 with figure 6 in La Rocca et al.
2002 and figure 13 in La Rocca et al. 2005).

In summary, initiation of forcing results in interfacial wave beating owing to the
interaction of the transient and forced response with this phenomenon decaying in
time as the transient response is dissipated. As the resonant condition is approached,
by small finite adjustments of the forcing frequency, amplification of the interface
displacement as well as the increased contribution by higher harmonics are observed.
Such behaviour is consistent with previous shallow and intermediate water studies
conducted with a single- (e.g. Chester & Bones 1968; Faltinsen & Timokha 2002;
Faltinsen et al. 2005b) and two-layer fluids (e.g. La Rocca et al. 2002, 2005). The
important difference is the negative nonlinear resonance behaviour (σf /σ1 < 1), which
is different from the positive nonlinear behaviour predicted by Thorpe (1968) and in
analogous single-layer-fluid studies conducted in shallow water.

3.1. Excitation of the primary forced mode

In order to separate the primary mode of the forced response from its higher har-
monics, consider the bandpass filtered interface displacement time series of the primary
forced mode for a typical run (run 6), collected at probes 1 and 5 (see figure 1),
presented in figure 4. When σf /σ1 = 1.07 (figure 4a(i)), the interface displacement
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collected at the two locations are phase locked and the maximum interface displace-
ment is observed at probe 1, suggesting that at this frequency, the response is a
horizontal mode one planar standing wave (node at the tank centreline, see figure 1).
This is further illustrated in figure 4(a)(ii) where the interface displacement at probe
5 versus the interface displacement at probe 1 is presented, with the observed linear
relationship between the interface displacements at the two measurement locations
being in agreement with the theoretical prediction for a planar standing wave (see
figure 15(c) in Faltinsen et al. 2003).

This planar standing wave is maintained as the forcing frequency is decreased until
σf /σ1 = 0.96 (time series in figure 4b(i)). Amplification of the interface displacement is
observed at probe 1 during the first 10 forcing periods at this new forcing frequency,
suggesting establishment of the resonant condition. At this point, instability of the
planar standing wave is visually observed across the density interface. Mixing of the
density interface by this instability continues and, after a further 5–10 forcing periods,
the planar standing wave begins to lose its two-dimensional character so that the
two signals are no longer phase locked after 20 forcing periods. During the next 20
forcing periods, the interface displacement at probe 5 continues to increase until it
is approximately equal to that measured at probe 1. The interface displacement at
probe 5 versus probe 1 after 40 forcing periods is presented in figure 4(b)(ii), and
indicates an elliptical relationship between the interface displacements measured at
the two locations. An elliptical relationship has previously been shown to characterize
a swirling wave (see figure 16 in Faltinsen et al. 2003). Experiments in a cylindrical
tank with a single-layer fluid exhibited similar behaviour, with a clear transition from
a planar wave to a swirling wave motion at a certain frequency and wave amplitude
depending on the excitation amplitude (Royon-Lebeaud et al. 2007).

The swirling wave displays little interfacial mixing; however, mixing associated
with planar wave instability results in sufficient thickening of the interface (after
approximately 100 forcing periods) that it increases σ1 and hence the system is
detuned from the resonant condition, resulting in a reduction in interface amplitude
and a return to a planar waveform. A further increase in the forcing frequency
may offset the increase in σ1 associated with the thickening of the interface so that
resonance and, hence, a swirling wave may be re-established. This process is illustrated
in figure 4(c)(i) (σf /σ1 = 0.92) where it is evident that, while there is an amplification
of the interface displacement at probe 1 during the first 15 forcing periods, the
response is a planar standing wave (figure 4(c)(i), (ii)). After 25 forcing periods, the
time series at the two measurement locations are no longer in phase and amplification
at probe 5 is noted until, after approximately 45 forcing periods, the swirling wave is
observed (figure 4c(i), (ii)). Subsequent increases in the forcing frequency result in a
swirling wave being re-established (for at least 100 forcing periods) until the resonant
condition is lost, at which point the interface displacement reduces dramatically and
the primary mode response consists of only a planar standing wave (see figure 4d(i),
(ii) for which σf /σ1 = 0.78).

The behaviour of the primary forced mode over the experimental regime considered
here, using a shallow two-layer fluid, follows that demonstrated previously in a single-
layer fluid of intermediate depth consisting of a rotating ‘swirling’ wave within a
frequency bandwidth around the resonant condition, whilst outside this bandwidth it
is found to be a planar standing wave (e.g. Gavrilyuk et al. 2000; Faltinsen et al. 2003,
2005b; Royon-Lebeaud et al. 2007). Unlike swirling surface waves, swirling interfacial
waves occur for frequencies σf /σ1 < 1.

The influence of varying the forcing amplitude for a constant layer depth ratio
(hE/2R =0.1), as depicted in figure 5 where the normalized maximum interface
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Figure 5. The influence of forcing amplitude A on the steady-state interface displacement η
of the primary forced mode measured over a frequency bandwidth 0.7 <σf /σ1 < 1.1 at probe
1 for hE/2R = 0.1. (a) Resonance is approached by decreasing the forcing frequency for runs
2 (A/R =0.005, stars), 4 (A/R = 0.01, squares), 6 (A/R = 0.015, circles), and 8 (A/R = 0.02,
diamonds). (b) Resonance is approached by increasing the forcing frequency for runs 1
(A/R = 0.005, stars), 3 (A/R = 0.01, squares), 5 (A/R =0.015, circles), and 7 (A/R = 0.02,
diamonds). The solid symbols indicate when the steady-state primary forced mode is a swirling
wave.

displacement (η/2R, taken as the interface displacement after approximately 45–50
forcing periods) of the primary forced mode is plotted as a function of the normalized
forcing frequency (σf /σ1). In figure 5(a), the resonant condition is approached
by decreasing the forcing frequency, whereas in figure 5(b), it is approached by
increasing the forcing frequency. Note that the bandwidth over which resonance
occurs is substantially larger in figure 5(a) than in figure 5(b). The maximum interface
displacement in both is approximately η/2R = 0.1, regardless of the forcing amplitude,
with this maximum occurring at a frequency of approximately σf /σ1 = 0.93. This
hysteresis and shift of the resonant condition from σf /σ1 = 1 is due to nonlinearity,
which is negative in stratified systems as opposed to positive nonlinearity observed for
single layer-shallow-fluid studies (e.g. Ockendon & Ockendon 1973; Faltinsen et al.
2000). Nevertheless, in both figures 5(a) and 5(b), the frequency bandwidth over which
resonance occurs increases noticeably as the forcing amplitude increases, a result noted
in previous studies in shallow and deep water conducted with a single-layer fluid (e.g.
Faltinsen & Timokha 2001; Faltinsen et al. 2003, 2005a; Royon-Lebeaud et al. 2007).

The bending of the frequency response curve for σf /σ1 < 1 occurs in an analogous
fashion to that of a softening spring (e.g. Hayfeh & Mook 1979), with the wave motion
bifurcating to a stable swirling mode that exhibits negative nonlinearity. Specifically,
when the frequency is increased by small increments, planar waves bifurcate to a
swirling mode at a certain value of σf /σ1 and a jump in wave amplitude occurs
(figure 5b). Then, as the frequency is further increased, the wave amplitude decreases
(soft spring behaviour) and a bifurcation to planar waves takes place. When resonance
is approached by decreasing the forcing frequency by small decrements (figure 5a),
the inverse behaviour is observed, but the values of σf /σ1 at the bifurcation points
are not the same. As seen in figure 5, these bifurcation points depend upon the forcing
amplitude. Previous single-layer-fluid studies have demonstrated that these bifurcation
points also depend upon the severity of the hysteresis which, in turn, is a function
of the fluid depth h/L (e.g. Faltinsen & Timokha 2001; Faltinsen et al. 2003, 2005a).
In order to illustrate the bifurcations and the hysteresis more clearly, we combine
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Figure 6. Bifurcations from planar to swirling waves and vice versa for hE/2R =0.1 and
A/R = 0.01, illustrating the hysteresis. Results are presented for runs 3 (increasing the forcing
frequency, grey circles) and 8 (decreasing the forcing frequency, black circles). The bifurcation
points are labelled and the filled symbols indicate when the steady state primary forced mode
is a swirling wave.

the data obtained by increasing and decreasing the forcing frequency for one forcing
amplitude (A/R = 0.01) (figure 6). The bifurcation points are denoted by Bi with i = 1,
2, 3, 4. The experimental values are B1 ≈ 0.88σf /σ1, B2 ≈ 0.87σf /σ1, B3 ≈ 0.98σf /σ1

and B4 ≈ 0.96σf /σ1. The uncertainty in the values of the bifurcation points, especially
in the inverse bifurcations, is due to the relatively large perturbations caused by the
observed interfacial instability as well as nonlinear interactions with higher harmonics.
It should also be noted that for lower forcing amplitudes (A/R = 0.005), the amplitude
response curve does not exhibit any bifurcations because of the relatively large
dissipation.

Now consider the influence of varying the fluid depth, illustrated in figure 7 in which
the resonant condition is approached by decreasing the forcing frequency. Note that
while it is possible to keep the depth of the thickest layer constant and vary the
effective depth hE , it is not possible to keep the effective depth constant while varying
the depth of the thickest layer. In figure 7(a–c), the equivalent depth hE is decreased
by reducing the depth of each layer equally. As the layer depths are reduced, the
frequency bandwidth over which a large-amplitude response (η/2R > 0.03) is observed
increases and is shifted further from the primary natural frequency (σf /σ1 = 1) (e.g.
Ockendon & Ockendon 1973; Dean & Dalrymple 1992; Faltinsen et al. 2000). Now
consider figure 7(d) in which the equivalent depth is the same as in figure 7(c), but the
fluid depths h1 and h2 are not equal. Note that while the frequency bandwidth over
which a large-amplitude response is observed and the maximum normalized interface
displacement of the swirling wave is the same in figure 7(c) and figure 7(d), the
frequency shift from the primary natural frequency is not as pronounced in figure 7(d)
and is more akin to that noted in figure 7(a). The influence of the vertical length scales
in two-layer stratified systems is now clear: the equivalent depth influences the extent
of the frequency bandwidth around the resonant condition, while the deeper of the
two fluid layers (h2 in the example given in figure 7) determines the magnitude of the
negative nonlinear shift of the resonant condition from the primary natural frequency.
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Figure 7. The influence of the equivalent depth hE on the steady-state interface displacement
η of the primary forced mode measured over a frequency bandwidth 0.75 <σf /σ1 < 1.2 at
probe 1 for A/R =0.015 (a) run 6 (hE/2R = 0.1, h1 = h2 = 19.5 cm), (b) run 10 (hE/2R = 0.07,
h1 = h2 = 13.5 cm), (c) run 12 (hE/2R = 0.05, h1 = h2 = 10 cm), and (d) run 14 (hE/2R = 0.05,
h1 = 7 cm, h2 = 20 cm). The solid horizontal line in (a)–(d) indicates the normalized equivalent
depth hE/2R for each run of the experiment. The filled squares indicate when the steady-state
primary forced mode is a swirling wave.

3.1.1. Interfacial mixing

The thickening of the density interface owing to the interfacial mixing generated by
planar wave instability is reasonably pronounced, as illustrated in figure 8 in which
the density profile before the commencement and after the termination of run 5 is
shown (after approximately 500 forcing periods), and is sufficient to increase σ1 such
that the swirling wave is detuned from the resonant condition. In this way, mixing of
the density interface places an upper bound on the wave amplitude and duration of
a resonant response in stratified fluids.

Thorpe (1978), Holyer (1979) and others have argued that interfacial wave breaking
in a layered stratification may occur owing to convective instability, with the
convective breaking criterion being U/c0 ∼ 1 where U is the wave-induced velocity.
Laboratory experiments by Grue et al. (2000) demonstrated that interfacial wave
breaking due to convective instability in a two-layer fluid may still occur even when
U/c0 ∼ 0.8. For run 5 of these experiments, the linear phase speed determined from
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Figure 8. Density profiles measured with the CT probe before (solid line) and after (dashed
line) run 5 of the experiment was conducted (A/R = 0.015, hE/2R = 0.1).

figure 8 was c0 = 8.5 cm s−1 whilst the maximum observed velocity measured near the
tank centre by the ADV, when interfacial instabilities are noted, was U = 4.5 cm s−1

so that U/c0 = 0.53. Similar values of U/c0 are returned over the entire experimental
regime suggesting that the observed interfacial instabilities are unlikely to be caused
by convective instability.

The oscillatory shear flow considered here implies that using the gradient Richard-
son number criterion of Ri < 0.25 to determine whether the observed instabilities
are generated by Kelvin–Helmholtz instability is not applicable (e.g. Horn, Imberger
& Ivey 2001; Troy & Koseff 2005). An experimental study by Troy & Koseff (2005) on
the instability of long interfacial waves showed that a reasonable Kelvin–Helmholtz
instability criterion is approximately

Riw ≡ N2(z)

|∂U/∂z|2 < 0.07 (3.1)

where, N(z) =
√

(−g/ρ)(dρ/dz) is the local buoyancy frequency and ∂U/∂z is the ver-
tical shear of the wave-induced horizontal velocity. For equal layer fluid depth, the
velocity on each side of the interface can be obtained by noting that U = ησ whereas
the thickness of the oscillating shear layer is determined by viscosity and thus is given
by δs = 5(ν/σ )1/2 (Lighthill 1978, p. 131) so that (3.1) becomes

Riw ≡ N2(z)

(ησ )2
(ν/σ ) < 0.011. (3.2)

For run 5, for example, the maximum buoyancy frequency is N = 2.1 rad s−1 (calcu-
lated from figure 8) while σ = σ1 = 0.32 rad s−1 (at resonance), so from (3.2) we expect
the onset of instabilities when η � 11 cm. In the experimental study by Thorpe (1968),
the buoyancy frequency was approximately N = 1.74 rad s−1 while σ1 = 0.62 rad s−1 so
that the criterion becomes η � 3.4 cm. Instability of the density interface in the present
study and in Thorpe (1968) was noted after 10 and 4 cm, respectively (see figure 13
in Thorpe 1968) so that (3.2) provides a quantitative measure for predicting the onset
of Kelvin–Helmholtz instabilities for basin-scale interfacial modes in both circular
cylindrical (present study) and rectangular (Thorpe 1968) domains.

3.1.2. Viscous dissipation

Following the initiation of an experiment, there is little evidence of the transient
response after approximately 40–50 forcing periods. In order to investigate this
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Figure 9. The decay of normalized interface displacement η of the primary natural mode of
the basin, measured at probe 1 for rundown experiments 15 and 16. The diamonds represent
the interface displacement of every second wave crest for the decaying planar wave observed
in run 15. The circles represent the interface displacement of every second wave crest for the
decaying swirling wave observed in run 16. The solid horizontal line indicates the point at
which the normalized interface displacement is 1/e of its initial value.

observation further, an experiment was conducted (run 15) for which the forcing
frequency was kept constant, but far from the resonant frequency of the primary
natural mode, for 100 forcing periods (in order to ensure that the transient response
has dissipated completely), the forcing was then stopped and the decay of the transient
planar wave recorded at probe 1. Such an approach was used in the two-layer
immiscible fluid laboratory studies of La Rocca et al. (2002, 2005) conducted in a
square domain, in which it was demonstrated that the transient interfacial planar wave
generated in this manner decays in an exponential fashion, owing to viscous effects.

Figure 9 illustrates the decay of the primary mode following the cessation of
forcing for run 15. There is a slight frequency adjustment of the primary mode
within approximately one wave period of turning off the forcing, associated with the
transition from a forced to a transient response. The subsequent decay of the transient
planar wave from this point, given in figure 9, is largely exponential in character,
decaying slightly faster during the first 10T1 (T1 being the period of primary natural
mode of the domain) in comparison with the decay rate after 40T1. From figure 9,
an estimate of the e-folding time scale is approximately 22T1. The amplitude of the
transient response is 10 % of its initial value after 50 periods, so that our assumption
that the forced response approaches a steady state after approximately 40–50 forcing
periods is reasonable.

The decay is exponential of the form

η

η0

= exp(−κ1t), (3.3)

where κ1 = γ1σ1 for the primary natural mode of the basin. In general, dissipation on
the sidewalls owing to viscous action can be written as

γ1s =
C

R
(ν/2σ1)

1/2. (3.4)



Resonantly forced interfacial waves in a cylindrical basin 217

For deep water in a circular basin, σ1 =
√

g′k1, k1 = 1.841/R, which gives

γ1s = CR−3/4ν1/2g−1/4, (3.5)

with the constant C being determined experimentally as having a value of approxi-
mately 1 (see Royon-Lebeaud et al. 2007). Simply replacing g by g′ in (3.5) gives
a predicted e-folding time scale for run 15 of approximately 50T1, rather than the
22T1 determined experimentally, suggesting that interfacial and bottom boundary
dissipation are both important contributors to decay of the primary mode. For

shallow water, σ1 =
√

g′k2
1hE , so that (3.4) becomes

γ1s = C

(
R

hE

)1/4

(ν)1/2R−3/4g′−1/4. (3.6)

Dissipation at the interface and the bottom is given by

γ1i =
C2

h
(ν/2σ1)

1/2, (3.7)

where h is the characteristic depth (Lighthill 1978) which we take as the equivalent
layer depth, so that (3.7) becomes

γ1i = C

(
R

hE

)1/4

(ν)1/2R−3/4g′−1/4C3

R

hE

. (3.8)

Thus, the expression for the logarithmic decrement coefficient of the primary natural
mode, γ1, in a two-layer shallow fluid with both sidewall and interfacial dissipation is
given by

γ1 = γ1s + γ1i = C

(
R

hE

)1/4

(ν)1/2R−3/4g′−1/4

[
1 + C3

R

hE

]
. (3.9)

The value of κ1 and, hence, γ1 may be determined from figure 9 which, in turn,
allows us to calculate C3 from (3.9) after assuming a value of C ≈ 1 from single-layer
theory. For run 15 of the experiment this gives C3 ≈ 6.5, indicating that interfacial
and bottom boundary dissipation dominates wave decay in baroclinic shallow-water
studies. Furthermore, the logarithmic decrement coefficient of the primary natural
mode determined in this fashion is γ1 = 0.047, which is in reasonable agreement with
the value of γ1 = 0.040 determined experimentally in the two-layer immiscible fluid
study conducted by La Rocca et al. (2002) in a square domain.

Note that if the same experiment had been conducted in the facility with a single-
layer fluid of identical total depth, then from (3.5), the e-folding time scale for the
standing wave at the free surface is approximately 170T1. This result implies that
viscous dissipation in a single-layer fluid is weak and it takes a long time for the
transient response to decay, as observed in laboratory experiments performed in
square-bases and circular tanks containing a single-layer fluid (e.g. Faltinsen et al.
2003, 2005b; Royon-Lebeaud et al. 2007).

Also presented in figure 9 is run 16, for which a swirling wave is established.
During the first 10 periods following the cessation of forcing, the decay of the
transient swirling wave amplitude occurred significantly faster than the exponential
rate observed for the transient planar wave in run 15. This may be because
during this period there is an additional pathway by which energy may be lost
from the primary (swirling) mode. Specifically, this is due to the nonlinear energy
transfer from the primary (swirling) mode to higher modes that occurs when the
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Figure 10. Interface displacement η of the forced response collected at probe 1 for run 9. (i)
The raw time series, (ii) the time series in (i) after bandpass filtering to isolate the primary
forced mode, (iii) the time series in (i) after bandpass filtering to isolate the higher-frequency
components of the forced response for (a) σf /σ1 = 1.08, (b) σf /σ1 = 0.99, and (c) σf /σ1 = 0.86.

wave amplitude is large owing to secondary (internal) resonance (this process
is discussed further in § 3.2) (e.g. Faltinsen et al. 2005b; La Rocca et al. 2005).
After some time, the primary natural mode will have decayed sufficiently that
this additional pathway is no longer in operation. From figure 9, this appears to
occur after 10 periods, after which time a transition from a (three-dimensional)
swirling wave to a (two-dimensional) planar wave is noted, by visual inspection
of the interface displacement. After approximately 30 periods, this transition is
complete with the subsequent decay of the primary natural mode being exponential in
character and is described well by the logarithmic decrement coefficient, γ1, noted for
run 15.

3.2. Excitation of the higher harmonics

The manner in which the higher harmonics may contribute to the response is
illustrated in figure 10. The interface displacement measured at probe 1 is presented
at three forcing frequencies (figure 10) for run 9 of the experiment. Panel (i) for each
forcing frequency is the raw time series, panel (ii) is the bandpass-filtered signal cor-
responding to the primary forced mode, and panel (iii) is the bandpass filtered signal
corresponding to the higher harmonics of the forced response. As the primary natural
frequency (σf /σ1 = 1) is approached, the amplitude of the higher harmonics increases
with this contribution being as high as 20 % of the total interface displacement. As
noted earlier, previous workers have suggested that the significant contribution of
higher harmonics in shallow water is the result of the natural frequencies of a square
or rectangular domain having a commensurate spectrum such that nonlinearities,
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introduced when the primary mode becomes large, result in secondary (internal)
resonance and excitation of these higher harmonics (e.g. Faltinsen & Timokha 2002;
Faltinsen et al. 2005b; La Rocca et al. 2005). An anonymous reviewer noted that
higher harmonics have a commensurate spectrum only for rectangular and square geo-
metries and not for the Bessel modes of the circular domain considered in the present
study. Nevertheless, Faltinsen et al. (2005b) observed that even if the spectrum is not
commensurate, the probability of secondary resonance grows with increasing wave
amplitude and thus, at near-resonant conditions, this phenomenon may still occur.
To determine unequivocally whether the higher harmonics observed at near-resonant
forcing are in fact higher modes generated by secondary resonance, the experimentally
measured modal structure (which can be inferred from suitably bandpass-filtered in-
terface displacement time series recorded at the 5 locations within the circular domain
see figure 1) must be compared to the theoretical modal structure of the higher mode
under investigation. Such an approach has been performed successfully by Wake, Ivey
& Imberger (2005) and La Rocca et al. (2005), but goes beyond the scope of the current
work.

Adopting a similar approach to that presented in figure 10, the contribution by
the higher harmonics may be investigated for the entire experimental regime. For
the range of forcing amplitudes considered in this study, there is little evidence of
a greater contribution by higher harmonics as the forcing amplitude increases. As
the equivalent depth is reduced from hE/2R = 0.1 − 0.05 (by reducing the depth of
each layer equally) there is evidence of increased higher harmonic activity, with the
maximum contribution increasing to approximately 25 % of the amplitude of the
forced response. The greatest high-frequency wave activity is observed near resonance
when the equivalent depth is hE/2R = 0.05 but the fluid depths h1 and h2 are not
equal. In this instance, the contribution of waves with a frequency greater than
the primary mode contribute approximately 45 % of the response. In varying the
layer depths we have allowed a second mechansim that may generate high-frequency
waves. Specifically, the unequal layer depths facilitate the generation of both a planar
standing wave and a nonlinear progressive surge following a basin-scale forcing (e.g.
Boegman, Ivey & Imberger 2005). The nonlinear surge, which has a frequency twice
that of the primary forced mode, continues to steepen until such time as dispersive
effects become significant and higher-frequency nonlinear waves are observed (e.g.
Boegman et al. 2005).

This process has previously been described in laboratory studies as well as in the field
(e.g. Thorpe 1971; Horn et al. 2001; Boegman et al. 2005). Evidence of this generation
mechanism is provided in figure 11 which presents normalized power spectra of the
interface displacement measured at probe 1 for run 5 (hE/2R =0.1, h1 =h2), run 11
(hE/2R =0.05, h1 = h2), and run 13 (hE/2R = 0.05, h1 	= h2) at resonance. Note that
there is little difference between the power spectra for runs 5 and 11, however, for run
13 with unequal layer depths, there is a noticeable increase in the size of the spectral
peak at twice the resonant frequency (owing to the nonlinear surge) as well as an
increase in spectral energy over a higher-frequency bandwidth (between σ/σf = 3 and
σ/σf = 9 in figure 11), which is the characteristic power spectral representation of
nonlinear waves (as noted in figure 5 by Boegman et al. 2005).

4. Conclusions and further discussions
The results of this laboratory study conducted in shallow water (hE/2R � 0.1)

with a two-layer fluid, exhibit a number of similarities with previous shallow-water
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Figure 11. Normalized power spectra of the interface displacements η collected at probe 1
for run 5 (A/R =0.015, hE/2R = 0.1, h1 = h2 = 19.5 cm), run 11 (A/R =0.015, hE/2R = 0.05,
h1 = h2 = 10 cm), and run 13 (A/R = 0.015, hE/2R = 0.05, h1 = 7 cm, h2 = 20 cm) at resonance.
The observed frequency σ is scaled by the forcing frequency σf . The solid vertical lines identify
the frequencies of the harmonics of the primary forced mode. Spectra have been smoothed in
the frequency bandwidth to improve confidence, with the 95 % confidence level shown by the
dotted lines.

studies performed in single-layer fluids. Similarities include the generation of a large-
amplitude response over a frequency bandwidth offset from the primary resonance, the
generation of a swirling mode at the observed resonant condition, and the significant
contribution of higher harmonics. Chaotic motions are not observed, instead planar
wave motion bifurcates to a stable swirling mode and vice versa. The two-layer
experiments did produce results that are unique to stratified domains. In particular,
the observed negative nonlinearity of the resonant condition at shallow water depth,
mixing of the density interface, by shear instabilities, resulting in the detuning of the
response from the resonant condition, the enhanced role of viscous dissipation in
comparison to single-layer-fluid studies, and an alternative pathway for the nonlinear
generation of higher-frequency waves when layer depths are disparate.

One aspect of the single-layer-fluid studies that has yet to be discussed in the present
work is what is termed ‘local near-wall phenomena’ which refers to the run-up of fluid
up the sidewalls of the tank accompanied by splashing/overturning with possible drop
formation (e.g. Faltinsen et al. 2003; Royon-Lebeaud et al. 2007). This instability of
the air–water interface is pronounced at resonance, even for small forcing amplitudes,
so that at some critical (large) wave displacement, additional energy provided by the
resonant forcing manifests itself as local near-wall phenomena. With a two-layer fluid,
such local near-wall phenomena are not permitted by the presence of the upper layer.
In this instance, the maximum allowable interface displacement of the primary mode
at resonance is constrained by mixing of the density interface so that interfacial wave
instability may be considered to be the two-layer analogue of the ‘local near-wall
phenomena’ and chaos noted in single-layer studies.

The present study has demonstrated that a swirling wave can be generated at near
resonant forcing in shallow stratified fluids, a result with potential implications for
enclosed water bodies such as lakes and reservoirs. The traditional view of fluid
motion within such stratified systems is that, so long as the characteristic horizontal
scale of the domain R is less than the characteristic scale at which the Earth’s rotation
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begins to influence fluid motion (given by the baroclinic Rossby radius of deformation
Ri = c0/f , where f is the Coriolis frequency), then following a uni-directional periodic
forcing (typically by the wind) the response is believed to be predominantly two-
dimensional (e.g. Mortimer 1974; Imberger 1998). The findings of this study suggest
that three-dimensional motions may be possible in special circumstances if such a
system were subject to periodic forcing close to the natural frequency of the domain.
This, in turn, would influence the fate and transport of sediments, nutrients and other
biological agents within such water bodies.

Another outcome of the current work for the study of stratified water bodies is
the nonlinear excitation of higher harmonics by secondary resonance. As noted in
§ 3.2, significant advances have been made in recent years in the understanding of the
energy transfer from the basin-scale to the smallest scales of motion within enclosed
water bodies. One such pathway involves the nonlinear steepening of the basin-scale
wave-resulting in the transfer of energy to nonlinear waves with a much shorter length
scale (e.g. Horn et al. 2001; Boegman et al. 2005). Nonlinear internal resonance to
higher harmonics from the primary mode would provide another pathway by which
energy could be transferred from the basin-scale to waves with a much shorter length
scale. Such small-scale motions have been shown to propagate to the boundary
and break, thus directly affecting the distribution of sediments, nutrients and other
biological agents, and hence influence the water quality within such a system (e.g.
Boegman et al. 2003, 2005).
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